Describe Star-Cubing method with suitable example.

 The Star-Cubing method, which integrates top-down and bottom-up computation

  • Star Cubing integrates the top-down and bottom-up methods. It explores shared dimensions. 
  • Star-Cubing combines the strengths of the other methods we have studied up to this point. It integrates top-down and bottom-up cube computation and explores both multidimensional aggregation (similar to MultiWay) and Apriori-like pruning (similar to BUC). It operates from a data structure called a star tree, which performs lossless data compression, thereby reducing the computation time and memory requirements.
  • The Star-Cubing algorithm explores both the bottom-up and top-down computation models as follows: On the global computation order, it uses the bottom-up model. However, it has a sublayer underneath based on the top-down model, which explores the notion of shared dimensions, as we shall see in the following. This integration allows the algorithm to aggregate on multiple dimensions while still partitioning parent group-by's and pruning child group-by's that do not satisfy the iceberg condition.
  • If we were to follow only the bottom-up model (similar to MultiWay), then the cuboids marked as pruned by Star-Cubing would still be explored. Star-Cubing is able to prune the indicated cuboids because it considers shared dimensions.


For example, dimension A is the shared dimension of AC and C. AC/C means cuboid AC has shared dimensions C. Star cubing allows for shared computations. e.g., cuboid C is computed simultaneously as AC. Star Cubing aggregates in a top-down manner but with the bottom-up sub- layer underneath which will allow Apriori pruning. Its shared dimensions grow in a bottom-up fashion. As shown in figure 4.7.




Comments

Popular posts from this blog

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where a charge is the fee that a doctor charges a patient for a visit. a) Draw a schema diagram for the above data warehouse using one of the schemas. [star, snowflake, fact constellation] b) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2004? c) To obtain the same list, write an SQL query assuming the data are stored in a relational database with the schema fee (day, month, year, doctor, hospital, patient, count, charge)

Suppose that a data warehouse consists of the four dimensions; date, spectator, location, and game, and the two measures, count and charge, where charge is the fee that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate. a) Draw a star schema diagram for the data b) Starting with the base cuboid [date; spectator; location; game], what specific OLAP operations should perform in order to list the total charge paid by student spectators at GM Place in 2004?