Explain binning method to handle noisy data with example.

Noise is a random error or variance in a measured variable. 

Binning method: Binning methods smooth a sorted data value by consulting its “neighborhood,” i.e. the values around it. The sorted values are distributed into a number of “buckets,” or bins.


Binning Methods for Data Smoothing

Let’s look at the following data smoothing techniques:

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

* Partition into (equal frequency) bins:

- Bin 1: 4, 8, 9, 15

- Bin 2: 21, 21, 24, 25

- Bin 3: 26, 28, 29, 34

* Smoothing by bin means:

- Bin 1: 9, 9, 9, 9

- Bin 2: 23, 23, 23, 23

- Bin 3: 29, 29, 29, 29

* Smoothing by bin boundaries:

- Bin 1: 4, 4, 4, 15

- Bin 2: 21, 21, 25, 25

- Bin 3: 26, 26, 26, 34


In smoothing by bin means, each value in a bin is replaced by the mean value of the bin. For example, the mean of the values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced by the value 9.

Similarly, smoothing by bin medians can be employed, in which each bin value is replaced by the bin median.

In smoothing by bin boundaries, the minimum and maximum values in a given bin are identified as the bin boundaries. Each bin value is then replaced by the closest boundary value. In general, the larger the width, the greater the effect of the smoothing.


Comments

Popular posts from this blog

Discuss classification or taxonomy of virtualization at different levels.

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

TU IT Sahayak Word processing