Explain some differences between mining association rules in multimedia databases and in transaction databases.

 To mine associations among multimedia objects, we can treat each image as a transaction and find frequently occurring patterns among different images. There are some differences between mining association rules in multimedia databases and in transaction databases.

First, an image may contain multiple objects, each with many features such as color, shape, texture, keyword, and spatial location, so there could be many possible associations. In many cases, a feature may be considered as the same in two images at a certain level of resolution, but different at a finer resolution level. Therefore, it is essential to promote a progressive resolution refinement approach.

Second, because a picture containing multiple recurrent objects is an important feature in image analysis, recurrence of the same objects should not be ignored in association analysis. For example, a picture containing two golden circles is treated quite differently from that containing only one.

Third, there often exist important spatial relationships among multimedia objects, such as above, beneath, between, nearby, left-of, and so on. These features are very useful for exploring object associations and correlations. Spatial relationships together with other content-based multimedia features, such as color, shape, texture, and keywords, may form interesting associations. Thus, spatial data mining methods and properties of topological spatial relationships become important for multimedia mining.

Comments

Popular posts from this blog

Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where a charge is the fee that a doctor charges a patient for a visit. a) Draw a schema diagram for the above data warehouse using one of the schemas. [star, snowflake, fact constellation] b) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2004? c) To obtain the same list, write an SQL query assuming the data are stored in a relational database with the schema fee (day, month, year, doctor, hospital, patient, count, charge)

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Suppose that a data warehouse consists of the four dimensions; date, spectator, location, and game, and the two measures, count and charge, where charge is the fee that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate. a) Draw a star schema diagram for the data b) Starting with the base cuboid [date; spectator; location; game], what specific OLAP operations should perform in order to list the total charge paid by student spectators at GM Place in 2004?