Describe the evolution from centralized DBMSs to distributed DBMSs.

 A major motivation behind the development of database systems is the desire to integrate the operational data of an organization and to provide controlled access to the data. Although integration and controlled access may imply centralization, this is not the intention. In fact, the development of computer networks promotes a decentralized mode of work. This decentralized approach mirrors the organizational structure of many companies, which are logically distributed into divisions, departments, projects, and so on, and physically distributed into offices, plants, and factories, where each unit maintains its own operational data. The shareability of the data and the efficiency of data access should be improved by the development of a distributed database system that reflects this organizational structure, makes the data in all units accessible, and stores data proximate to the location where it is most frequently used.

Distributed DBMSs should help resolve the islands of information problem. Databases are sometimes regarded as electronic islands that are distinct and generally inaccessible places, like remote islands. This may be a result of geographical separation, incompatible computer architectures, incompatible communication protocols, and so on. Integrating the databases into a logical whole may prevent this way of thinking.



Comments

Popular posts from this blog

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Suppose that a data warehouse consists of the four dimensions; date, spectator, location, and game, and the two measures, count and charge, where charge is the fee that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate. a) Draw a star schema diagram for the data b) Starting with the base cuboid [date; spectator; location; game], what specific OLAP operations should perform in order to list the total charge paid by student spectators at GM Place in 2004?

Explain network topology .Explain tis types with its advantages and disadvantges.