Explain BAYESIAN CLASSIFICATION.

 BAYESIAN CLASSIFICATION

Bayesian classification is a probabilistic approach to learning and inference based on a different view of what it means to learn from data, in which probability is used to represent uncertainty about the relationship being learned. Before we have seen any data, our prior opinions about what the true relationship might be are expressed in a probability distribution. After we look at the data, our revised opinions are captured by a posterior distribution. Bayesian learning can produce the probability distributions of the quantities of interest, and make the optimal decisions by reasoning about these probabilities together with observed data.

Bayesian classification uses the Bayes theorem to predict the occurrence of any event. Bayesian classifiers are the statistical classifiers with the Bayesian probability understandings. The theory expresses how a level of belief, expressed as a probability. Bayes theorem came into existence after Thomas Bayes who first utilized conditional probability to provide an algorithm that uses evidence to calculate limits on an unknown parameter.

Comments

Popular posts from this blog

Discuss classification or taxonomy of virtualization at different levels.

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where a charge is the fee that a doctor charges a patient for a visit. a) Draw a schema diagram for the above data warehouse using one of the schemas. [star, snowflake, fact constellation] b) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2004? c) To obtain the same list, write an SQL query assuming the data are stored in a relational database with the schema fee (day, month, year, doctor, hospital, patient, count, charge)