Explain The k-Nearest Neighbor Algorithm.

 The k-Nearest Neighbor Algorithm

• The k-nearest-neighbor method was first described in the early 1950s.

• The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms: an object is classified by a majority vote of its neighbors, with the object being assigned to the class most common amongst its k nearest neighbors (k is a positive integer, typically small).

• If k = 1, then the object is simply assigned to the class of its nearest neighbor.

The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles. If k = 3 it is assigned to the second class because there are 2 triangles and only 1 square inside the inner circle. If k = 5 it is assigned to the first class (3 squares vs. 2 triangles inside the outer circle).



Comments

Popular posts from this blog

Suppose that a data warehouse for Big-University consists of the following four dimensions: student, course, semester, and instructor, and two measures count and avg_grade. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the avg_grade measure stores the actual course grade of the student. At higher conceptual levels, avg_grade stores the average grade for the given combination. a) Draw a snowflake schema diagram for the data warehouse. b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each BigUniversity student. c) If each dimension has five levels (including all), such as “student < major < status < university < all”, how many cuboids will this cube contain (including the base and apex cuboids)?

Short note on E-Government Architecture

Discuss classification or taxonomy of virtualization at different levels.